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Abstract 
 

Real-time scene understanding is important for many 

applications of Unmanned Aerial Vehicles (UAVs) such as 

reconnaissance, surveillance, mapping, and infrastructure 

inspection. With the recent growth of computation power, 

it is feasible to use Deep Learning for real-time 

applications. Deep Convolutional Neural Networks 

(CNNs) have emerged as a powerful model for classifying 

image content, and are widely considered in the computer 

vision community to be the de facto standard approach for 

most problems. Current Deep learning approaches for 

image classification and object detection are designed and 

evaluated on lab setting human-centric photographs taken 

horizontally from a height of 1-2 meters. UAV images are 

taken vertically in high altitude; therefore the objects of 

interest are relatively small with a skewed vantage point 

which creates a real challenge in detection and 

classification of such images. Here we present a deep 

convolutional approach for classification of Aerial 

imagery taken by UAV. We applied our network on optical 

imagery taken with UAV RS-16 from Port Mansfield, TX. 

Experimental results in comparison with ground-truth 

show 93.6 % accuracy for UAV image classification.   

1. Introduction 

Unmanned Aerial Vehicles (UAVs) have seen 

unprecedented level of growth in recent years. UAVs are 

increasingly used for surveillance, fire detection, 

reconnaissance, mapping, cartography, landslide 

monitoring, inspection, traffic monitoring, search and 

rescue, to name a few application domains [1-3]. It is 

important for many of the aforementioned applications to 

perceive the scene in real-time. If a high altitude UAV can 

perform scene understanding by predicting the nature of 

landscape at any particular location, then a lower altitude 

UAV or a UGV (unmanned ground vehicle) can be send to 

the desired location for further detailed analysis for a 

specific application. The main purpose of the scene 

understanding using high altitude UAV is to remove the 

overhead of finding the desired location for the lower 

altitude UAV or UGVs for their specific purposes.  

Current computer vision algorithms and datasets are 

designed and evaluated on lab setting human centric 

photographs taken horizontally with a close distance to the 

object. For UAV imagery taken vertically in high altitude 

(10m to 100m) the objects of interest are relatively small 

and with less features, questioning the sustainability of 

current methods. For example an aerial image of building 

has only the top view of the building and except the roof, 

no distinguishable features are there. On the other hand 

corresponding terrestrial image of the same building has 

many features like door, windows, and walls which makes 

it easier for recognition even by human.  

Several approaches are utilized for object detection in 

aerial images. In 1988, Huertas and Nevatia [4] proposed a 

technique to detect buildings according to the rectangular 

components and shadow information. Based on the similar 

concept, Sirmacek and Unsalan [5] presented an approach 

to detect buildings using invariant color features, edge, 

and shadow information. Cote and Saeedi [6], introduced a 

method using Harris corner detector for building detection. 

Manno-Kovacs and Sziranyi [7] proposed a framework 

based on region orientation with several steps to achieve 

building detection. The main drawback of aforementioned 

methods is that they are not suitable for real time 

applications. Moreover, traditional approaches cannot 

learn new features automatically. Feature engineering is 

required to decide explicitly what features to learn. With 

the recent advances in GPU technology, deep learning has 

emerged as a feasible solution to real time applications. 

Deep learning consists of simultaneous learning of 

hierarchical models from multiple levels of representation 

that helps to identify input data [7, 8]. However limited 

work is performed for scene understanding using UAV 

images. 

In this paper, a deep convolutional neural network 

framework is implemented to achieve a fast and accurate 

result for scene understanding on Aerial images taken with 

UAV. The network architecture comprises a series of 

convolution and pooling layers followed by fully 

connected layers. We applied our network on optical 

imagery taken with UAV RS-16 from Port Mansfield, TX. 

The proposed architecture is able to predict the labels for 

 

 

Real-time Scene Understanding for UAV Imagery based on Deep Convolutional Neural 

Networks 

Clay Sheppard and Maryam Rahnemoonfar 

School of Engineering and Computing Sciences, Texas A&M University-Corpus Christi 

 

 

 

 



 

 

2 

the images captured by UAVs in real time. We applied the 

proposed network on 3864 images and achieved the 

accuracy of 93.6% on test dataset. We also evaluated the 

classwise accuracy for all four classes. In addition to real-

time class prediction with high-accuracy, our deep 

learning approach has automatic feature learning and the 

ability to handle larger datasets. 

The rest of the paper is organized as follows. Proposed 

methodology is explained in section 2. Experimental 

results are presented in section 3. Finally, the discussions 

and conclusions are drawn in section 4. 

2. Deep network architecture 

Convolutional Neural Networks (CNN) comprises various 

convolutional and pooling (subsampling) layers that 

resemble human visual system. The network architecture 

that was developed in this work is shown in Figure 1. As 

we can see in Figure 1, the first layer of the network is 

input layer containing the input image. The convolutional 

layer COV1 takes the 3 bands (RGB) in the input image 

and produces 6 different feature maps using a 5X5 kernel 

function. The convolution layer is followed by 2X2 max 

pooling layer (MP1 layer) with stride 2. 2X2 Max pooling 

reduces the dimensions of the image by taking the 

maximum value in a window at every depth slice in the 

feature map by 2 along both width and height. A stride of 

2 indicates that the window is moved two pixels at a time. 

This condenses the information by reducing the features 

by half. Reducing the dimensions of the image reduces 

computation time and allows the model to fit into GPU 

memory [9]. After first pooling layer we applied another 

layer of convolution (COV2 layer). This convolutional 

layer takes 6 output features from the previous layer as 

input and maps them to 12 feature maps using a 5X5 

kernel function. The convolution layer is again followed 

by a 2X2 max pooling layer (MP2 layer) with stride 2. 

This max pooling layer is followed by a fully connected 

layer (FC1 layer). As can be seen in Figure 3 the size of 

this fully connected layer is 8. We used dropout to prevent 

the network from over-fitting at this stage. Moreover, it 

helps network to learn fast. According to this technique, 

some units are randomly dropped along with their 

connections [10]. How many connections will be dropped 

off is decided by the percentage of dropout. In our 

research 50% of connections were randomly dropped off 

while training the network. Finally, the last fully 

connected layer (FC2) after the dropout layer gives the 

prediction for classification with the output size 4 because 

we have used four classes in this research namely, 

building, ground, road and tree. Softmax was used after 

the final output layer. Softmax activation is the normalized 

exponential probability of class observations represented 

as neuron activations. It is used for the output layer to 

ensure that the sum of the components of output vector is 

equal to 1. Batch normalization was performed after every 

convolution to remove internal covariate shift [11]. 

Out of 3880 images around 70% are used for training 

and 30% for testing. The network was trained for 60 

epochs on 2800 images. To minimize the error an Adam 

optimizer is used [12] because it requires little tuning of 

hyperparameters. The learning rate for the Adam 

optimizer is set at a constant 1e-3. Cross entropy [13] is 

used as the cost function. Rectified linear function [14] is 

used as an activation function. 

3. Experimental Results 

3.1. Dataset 

The dataset used in this work comprises images 

captured by an optical camera mounted on a UAV. The 

study area for this research is Port Mansfield, TX and data 

was captured on March 4-6, 2015. Figure 2 shows the 

google earth image of the study area along with the sample 

image captured by UAV in the inset. The UAV used in 

this work is Recon System™ (RS-16) Unmanned Aircraft 

System (UAS). The aircraft is a multi-payload, long 

endurance system capable of performing safe and 

successful civil missions in remote locations. Details of 

the aircraft, payload, and operations can be found in [15]. 

The resolution of the captured images is 1920 x 1080. The 

red circle in the Figure 2 shows the limit of our range 

Figure 1:  Network architecture developed for scene understanding 
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based on the C2 radio link between the GCS and the RS-

16, and the blue box shows the airspace limitations of our 

COA. A sample image captured by UAV can also be seen 

in the inset. The network was implemented using 

TensorFlow running on an NVidia 980Ti GPU. For 

training, 2800 images were used. For testing, a different 

set of 1064 images was used. 

3.2. Network testing and validation 

We tested and validated our algorithm on 1064 images. 

The network was trained with the dropout value of 50 

which indicates that 50% connections were dropped off 

randomly from the fully connected part of the network 

while training. We achieved the high accuracy of 93.6% 

on 1064 testing dataset. Our method is also very fast. The 

execution time required for our deep architecture is 0.0012 

second. 

Table 1 presents some difficult images for which our 

algorithm predicts accurately. As can be seen in Table 1, 

the network is able to predict well on some difficult 

images. One of the building images presented here is 

round shaped, and despite being not trained to predict 

round shaped buildings explicitly, the network was able to 

predict it well. In the ground images and one of the tree 

images mentioned in the table, there can be observed road 

like structures, but based on the dominant feature present 

in the image the network was able to predict it accurately. 

The road images presented in Table 1 have no proper 

boundaries but still network could detect the roads. 

 
Table 1. Correctly classified images and their label 

Sample images Predicted 

Label  

  

Building 

  

Ground 

  

Road 

  

Tree 

 

3.3. Class wise Accuracy Assessment 

In this section we calculated class wise statistics to 

analyze the performance of our method on individual 

classes. We computed precision and recall for all the 

classes as shown in Table 2. Precision corresponds to error 

of commission (inclusion); it estimates how many 

instances classified in a particular class are actually from 

that class. Recall corresponds to error of omission 

(exclusion); it estimates how many instances actually 

belong to a particular class are classified correctly [16]. 

 
Table 2.  Class wise precision and recall 

Class Precision (%) Recall (%) 

Building 97.96 96.97 

Ground 90.20 92.00 

Road 90.80 87.78 

Tree 95.83 98.57 

Overall accuracy (%) 93.6 

  

Figure 2: Location of the study area on Google earth along 

with the sample image captured by UAV in the inset 
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From Table 3, it can be observed that all the classes 

have adequate precision and recall. Building and tree 

classes have high precision and recall as compared to 

ground and road. There are some false positives and false 

negatives observed in ground and road classes that are 

responsible for relatively lower precision and recall as 

compared to building and tree classes. Further 

investigations by looking at the images which are not 

classified correctly, revealed that few samples from 

ground are classified as road and vice versa. The reason is 

few samples in the road class are mud roads (dirt roads) 

that have similar texture with ground.  

4. Conclusion 

We presented a deep convolutional neural network 

framework for scene understanding on UAV based optical 

images. Traditional scene understanding methods require 

feature engineering to learn features explicitly. The main 

advantage of using Deep Learning is that, unlike 

traditional methods it automatically learns features. 

Semantic outputs are generated to classify various objects 

such as building, tree, ground and road without additional 

translation. Our network architecture comprises series of 

convolution and pooling layers followed by fully 

connected layers. We applied our network on optical 

imagery taken with UAV RS-16 from Port Mansfield, TX. 

The proposed architecture is able to predict the labels for 

the images captured by UAVs in real time.  We reached 

the overall accuracy of 93.6% on the test dataset. 
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